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This derivation has many features is common with that of French & Wilson’s (henceforth ‘FW’) 'TRUNCATE' 
algorithm used to obtain the Bayesian posterior half-order moment (expectation of half power) of the intensity
(i.e. the expected amplitude), given the prior expectation of the X-ray intensity, its experimentally measured 
value and its standard uncertainty.  The expressions for the relevant probability density functions and other 
relevant equations are repeated here for easy reference.

Popov & Bourenkov (henceforth ‘PB’) proposed a likelihood function based on the acentric Wilson 
distribution (centric reflexions were excluded in their algorithm).  They used this in an optimisation of the 
absolute scale and the unconstrained components of the anisotropy tensor of the observed intensities.  The 
derivation of the ‘PB’ likelihood function is reproduced below (with minor changes in notation).  Then a new 
likelihood function ‘FW’ based on the FW posterior likelihood is derived.  The major difference between the 
PB and FW functions is that the former is error-free, i.e. it takes no account of experimental errors, whereas 
the latter assumes a Gaussian model for the experimental errors in the observed intensities, exactly as in the
FW TRUNCATE treatment.  This implies that for observed negative intensities, which can arise only through 
measurement error, the PB likelihood is undefined and hence all negative intensities must either be excluded
from the optimisation of the PB likelihood functions or set to zero.  This is likely to have a significant impact 
on the results in those cases where the true intensity is small relative to the mean intensity, since such 
intensities do carry information.  Hence the PB functions are only of theoretical interest and are not used in 
practice.

Note that in the case of twinning two implicit assumptions are made, first that all the twin domains have the 
same anisotropy of diffraction and second that that anisotropy obeys the twin symmetry.  In the case of the 
first assumption, diffraction anisotropy arises from a number of factors, for example the variability in the 
strengths and the directionality of intermolecular interactions (which is likely to be same for all twin domains), 
but also from radiation damage (which may well differ between twin domains).  In the case of the second 
assumption, twinning is largely a geometrical effect due to shape symmetry of the twin domain and to 
symmetry in the interactions at its boundaries (so twinned domains are able to pack together during crystal 
growth as easily as untwinned ones), but this does not necessarily imply that the diffraction anisotropy obeys 
that shape symmetry.  There is therefore no a priori reason why either of these two assumptions should hold 
in any particular case.  In the case that the anisotropy does not obey the twin symmetry knowledge of the 
twin operators is required.
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1. PB likelihood function: untwinned acentric & centric perfect hemihedral twin cases.

For an untwinned acentric or perfect hemihedrally twinned centric reflexion the prior probability 
density function (PDF) Pa h(Jh|Sh) of the true intensity Jh (conditional on its prior expectation Sh) is 
assumed to be the acentric Wilson PDF:

Pa h(Jh|Sh) = Sh
−1 exp(−Jh/Sh ) (1)

The prior expectation Sh of Jh can be expressed in terms of the zone-enhancement factor εh, a 
spherically-symmetric standard ‘profile’ function Ŝ(|sh|), the absolute scale factor g, and the overall 
anisotropic displacement tensor U on F:

Sh(g ,U) = ϵh Ŝ (|sh|) g exp(−4π2 ~sh Ush) (2)

Taking the negative log of (1), the contribution to the negative log-likelihood gain is then given by 
(omitting terms that are independent of the parameters):

−LLGa h(g ,U) = ln (Sh) + Jh /Sh (3)

2. PB likelihood function: untwinned centric case.

For untwinned centric reflexions we use the centric Wilson PDF as the prior Pc h(Jh|Sh) :

Pc h(Jh |Sh) = (2πSh Jh)
−½ exp(−Jh /2 Sh)

(4)

Again, taking the negative log of (4), the contribution to the negative log-likelihood gain is given by:

−LLGc h(g ,U) = ½ (ln(2πSh Jh) + Jh /Sh) (5)

PB appear not to have included centric reflexions in their treatment, though it is not clear why, given 
that it's such a simple modification.
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3. PB likelihood function: acentric perfect general and hemihedral twin cases.

In the perfect general twin case (N equal twin domains; usually N = 2: hemihedry, 4: tetartohedry or 8: 
ogdohedry), the PDF for acentric reflexions is:

Pat h(Jh |Sh) =
NN Jh

N−1

(N−1 )!Sh
N exp(−N Jh/Sh)

(6)

Again, taking the log of (6), the contribution to the negative log-likelihood gain is:

−LLGat h(g ,U) = N(ln (Sh) + Jh /Sh) (7)

In the perfect hemihedral twin case (N = 2) the PDF and -LLG for acentric reflexions are therefore:

Pat h(Jh| Sh) = 4Sh
−2 Jh exp(−2Jh /Sh)

−LLGat h(g ,U) = ln (Sh
2 /4 Jh) + 2 Jh /Sh

(8)

(9)

4. PB likelihood function: centric perfect general twin case.

In the perfect general twin case (N equal twin domains) the PDF for centric reflexions is:

Pct h(Jh|Sh) =
(N /2)N /2 Jh

N /2−1

Γ (N /2)Sh
N/2

exp(−N Jh /2Sh)

−LLGcth(g ,U ,α) = (N /2) (ln(Sh)+Jh /Sh)

(10)

(11)

For N = 2 this reduces to the acentric untwinned case (3).
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5. PB likelihood function: acentric imperfect general and hemihedral twin cases.

In the imperfect general twin case (N unequal twin domains) the PDF for acentric reflexions is:

Pat h(Jh |Sh) = Sh
−1
Σi

N
α i

−1
(Π j=1, j≠i

N αi
α i−α j

) exp(−Jh/α i Sh)
(12)

In the imperfect hemihedral twin case (N = 2) this reduces to:

Pat h(Jh |Sh) = ((1−2α)Sh)
−1

(exp(−Jh /(1−α)Sh) − exp(−Jh/αSh))

−LLGat h(Jh |Sh) = −ln(Pat h(Jh |Sh))

(13)

(14)

6. PB likelihood function: centric imperfect hemihedral twin case.

In the imperfect hemihedral twin case the PDF for centric reflexions is:

Pct h(Jh |Sh) = (2√α(1−α)Sh)
−1

exp(−Jh/2αSh) 1F1(½ ;1 ;(1−2α) Jh/2α(1−α)Sh)

= (2√α(1−α)Sh)
−1

exp(−Jh/4α(1−α)Sh) I0 ((1−2α) Jh/4α(1−α)Sh)

= (2√α(1−α)Sh)
−1

exp(−Jh/2(1−α)Sh) I ' 0((1−2α)J h/4α(1−α)Sh)

−LLGct h(Jh |Sh) = −ln (Pct h(Jh |Sh))

(15)

(16)

where 1F1(a; b; z) is Kummer’s confluent hypergeometric function, I0(z) is the zero-order modified Bessel 
function and I0’(x) is the scaled zero-order modified Bessel function: I0 ' (x )=exp(−x ) I0( x ) .  This avoids 
the division by α for α near to zero.  In (15) it is not necessary to deal specifically with the edge cases where 
α is near 0 or 0.5 since unlike (13) there is no cancellation of large terms.
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7. FW likelihood function: untwinned acentric case.

Since the prior distribution Ph(Jh|Sh) of the true intensity Jh (conditional on the prior expectation Sh  
of Jh) is independent of the error distribution Ph(Ih| Jh ,σh) of the measured intensity Ih, then the joint
distribution of Ih and Jh is simply the product of their respective densities:

Ph(Ih , J h|Sh ,σh) = Ph( Ih | Jh ,σh) Ph(J h |Sh) (17)

The PDF of Ih conditional on Sh and the standard deviation σh of Ih  is therefore given by marginalising 
out the unknown Jh from the joint distribution:

Ph(Ih |Sh ,σh) = ∫
0

∞

Ph(Ih , Jh|Sh ,σh) dJ h

= ∫
0

∞

Ph(Ih | Jh ,σh) Ph(Jh | Sh) dJh (18)

We assume that Ph(Ih|Jh ,σh) is the normal error distribution of Ih :

Ph(Ih | Jh ,σh) = (σh√2π)
−1

exp(−(Ih−Jh)
2
/2 σh

2
) (20)

In the untwinned acentric case:

Ph (Jh |Sh) = Sh
−1 exp(−Jh /Sh)

so in this case:

Ph (Ih |Sh ,σh) = (σh√2 πSh)
−1
∫
0

∞

exp(−(I h−Jh)
2
/2σ h

2
) exp(−Jh/Sh) dJh

(21)
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8. FW integral: case of small integer powers of Jh.

The prior distribution Ph (J h|Sh) of Jh takes different forms depending on the centricity of h and the 

twin fraction(s).  Also, very similar integrals will be required later for the evaluation in the various 

specific cases of the posterior moments ⟨Jh
m⟩ of Jh, so it is convenient to generalise the form of the 

required integral Qh(μ , ν ,ξ) here, incorporating the order m of the moment:

Q h(μ ,ν ,ξ) = (σh √2πSh
μ)

−1∫
0

∞

Jh
ν exp(−(Ih−Jh)

2
/2σ h

2
) exp(−ξ Jh /Sh) dJh

= (σh √2πSh
μ
)
−1
∫
0

∞

Jh
ν exp(−(Ih−Jh)

2
/2σ h

2
−ξJh /Sh) dJh

= (σh √2πSh
μ)

−1∫
0

∞

Jh
ν exp(−Ih

2
/2σ h

2
+ Ih Jh /σ h

2
−Jh

2
/2 σh

2
−ξ Jh /Sh) dJ h

= (σh √2πSh
μ)

−1
exp((ξσh)

2
/2 Sh

2
−ξI h/Sh)

∫
0

∞

Jh
ν exp(−(Jh /σ h−(Ih /σ h−ξσh /Sh))

2
/2) dJh

= σh
ν
(√2πSh

μ)
−1

exp((ξσh)
2
/2Sh

2−ξ Ih /Sh)∫
0

∞

uh
ν exp(−(uh−t h(ξ))

2
/2) duh

(22)

where uh=J h/σh and th(ξ)=Ih/ σh – ξσh/Sh .

For small positive integer values (0, 1 or 2) of ν the integral in (22) can be expressed in terms of the 
normal probability function φ and its integral Φ:

Qh(μ ,0,ξ) = (√2πSh
μ
)
−1

exp((ξσh)
2
/2Sh

2
−ξ Ih/Sh)∫

0

∞

exp(−(uh−th(ξ))
2
/2) duh

= Sh
−μ exp((ξσh)

2
/2Sh

2
−ξ Ih/Sh) Φ(th(ξ))

Qh(μ ,1,ξ) = σh(√2πSh
μ
)
−1

exp((ξσh)
2
/2Sh

2
−ξ Ih /Sh)∫

0

∞

uh exp(−(uh−th(ξ))
2
/2) duh

= σh Sh
−μ exp((ξσh)

2
/2Sh

2
−ξ Ih/Sh) (th(ξ) Φ(th(ξ)) + ϕ(th(ξ)))

Qh(μ ,2,ξ) = σh
2
(√2πSh

μ
)
−1

exp((ξσh)
2
/2Sh

2
−ξ Ih /Sh)∫

0

∞

uh
2 exp(−(uh−th(ξ))

2
/2) duh

= σh
2 Sh

−μ exp((ξσh)
2
/2Sh

2
−ξ Ih/Sh) (( th

2
(ξ)+1) Φ(th(ξ)) + th(ξ) ϕ(th(ξ)))

(23)

(24)

(25)

staraniso-LLG+moments.odt: p. 7 of 14



9. FW integral: case of non-integer and large integer powers of Jh.

For other values of ν the integral in (22) can be expressed in terms of the parabolic cylinder functions 
D, or alternatively U and V [http://mathworld.wolfram.com/ParabolicCylinderFunction.html].  Factoring 
out the constant term in the integral:

∫
0

∞

uνexp(−(u−t )2 /2) du = exp(−t2
/2)∫

0

∞

uνexp(−u2
/2+t u) du

(26)

Using the formula in Gradshteyn & Ryzhik, 7th Ed., p.365, eqn. 3.462(1) for ν > 0 and β > 0:

∫
0

∞

xν−1exp(−β x2
−γ x ) dx = (2β)−ν/2

Γ(ν) exp(γ2
/8β) D−ν( γ/√2β)

(27)

Making the necessary substitutions:

exp(−t2
/2)∫

0

∞

uνexp(−u2
/2+t u) du = Γ(ν +1) exp(−t2

/4) D−ν−1(−t)
(28)

An alternative definition of the PCFs (see above MathWorld site) is:

U(a , x ) = D−a−½( x ) (29)

Therefore for a = ν + ½:

∫
0

∞

uνexp(−(u−t )2 /2) du = Γ(ν +1) exp(−t2
/4) U(ν +½ ,−t )

(30)

Therefore from (22) the required integral in the general case is:

Qh(μ , ν , ξ) = σh
ν
(√2πSh

μ
)
−1

exp((ξσh)
2
/2Sh

2
−ξ Ih/Sh)

Γ(ν +1) exp(−th
2
(ξ)/4) U(ν +½ ,−th(ξ)) (31)
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10. FW integral: implementation of parabolic cylinder functions in Fortran 90.

A Fortran 90 subroutine is available to calculate the PCFs U(a,x) and V(a,x) for x ≥ 0 by numerical 
methods [Netlib software repository: algorithm toms/850; see also 
http://citeseerx.ist.psu.edu/viewdoc/download?  doi=10.1.1.100.6920&rep=rep1&type=pdf].

To avoid floating-point underflows and overflows in the exponential terms and to improve the relative 
accuracy of the result, the algorithm returns scaled PCFs:

~
U(a , x ) = F(a , x ) U(a , x )

~
V (a , x ) = V(a , x ) / F(a , x )

V (a , x ) = (Γ(½+a)/π) (sin(πa) D−a−½( x ) + D−a−½ (−x ))

(32)

(33)

(34)

where the scaling factor F(a,x) is:

F(a , x ) = (x /2+√ x 2
/4+a)

a
exp((x /2) √ x2

/4+a−a/2) (35)

Therefore now writing (30) in terms of the scaled PCFs:

∫
0

∞

uνexp(−(u−t )2 /2) du = Γ(½+a) exp(−t2
/4) U(a ,−t )

= Γ(½+a) exp(−t2
/4)

~
U(a ,−t ) / F(a ,−t)

= Γ(½+a) (−t /2+√ t2
/4+a)

−a

exp(−t2
/4+(t /2)√t2

/4+a+a /2) ~U(a ,−t) (36)

Since the PCF algorithm used cannot return function values for x < 0, the following transformation 
must be used:

U(a , x ) = π V (a ,−x ) /Γ (½+a)− sin(πa) U(a ,− x)

= F(a ,−x ) (π
~
V (a ,− x ) / Γ (½+a) − sin (πa)

~
U(a ,− x) / F2

(a ,−x )) (37)

or in terms of t for t > 0:

U(a ,−t ) = F(a , t) (π
~
V(a , t ) /Γ(½+a)− sin(πa)

~
U(a ,t ) / F2(a , t )) (38)

Substitution of (38) in (36) and again combining exponential terms as before to avoid floating-point 
overflows then gives the required value of the integral for t > 0:

∫
0

∞

uνexp (−(u−t )2 /2) du = Γ(½+a) (t /2+√t2
/4+a)

a
exp(−t2

/4+(t /2)√t 2
/4+a−a/2)

(π
~
V(a ,t ) /Γ (½+a)− sin (πa)

~
U(a ,t ) / F2

(a ,t ))
(39)
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11. FW likelihood function & posterior moments: untwinned acentric & centric perfect 
hemihedral twin cases.

In the untwinned acentric & centric perfect hemihedral twin cases, the required form of the Q integral 
is:

Ph(Ih |Sh ,σh) = (σh√2πSh)
−1
∫
0

∞

exp(−(Ih−Jh)
2
/2σ h

2
) exp(−Jh/Sh) dJ h

= Qh(1, 0, 1)

= Sh
−1 exp(σh

2
/2Sh

2
−Ih/Sh) Φ(th(1))

(40)

where th(1)=I h/σh– σh/Sh .  Hence the contribution to the negative log-likelihood gain is:

−LLGah(g ,U) = ln (Sh / Φ(t h(1))) − σh
2
/2 Sh

2
+ I h/Sh

(41)

In the general untwinned case the posterior density of Jh from Bayes’  theorem is the normalised joint 

probability density (14) Ph(Ih , J h|Sh ,σh) :

Ph(Jh | Ih ,Sh ,σh) = Ph( Ih , Jh |Sh ,σh) / ∫
0

∞

Ph(Ih , J h|Sh ,σh) dJ h

= Ph( Ih | Jh ,σh) Ph(Jh |Sh) / ∫
0

∞

Ph( Ih | Jh ,σh) Ph(Jh |Sh) dJh

(42)

The m’th posterior moment (expectation of m’th power) of Jh is then:

⟨J h
m
⟩ = ∫

0

∞

Jh
m Ph(Jh | Ih , Sh ,σh) dJh

(43)

In the untwinned acentric and centric perfect hemihedral twin cases this is:

⟨J h
m
⟩ = ∫

0

∞

Jh
m Ph(Ih | J h ,σh) Ph(Jh |Sh) dJh / ∫

0

∞

Ph(Ih| Jh ,σh) Ph(Jh |Sh) dJh

= Qh(0, m , 1) / Qh(0, 0, 1)

(44)

Note that for all the moments the value of μ is irrelevant since it cancels out.  

In this case the posterior half- (m = ½) and first-order (m = 1) moments (i.e. the estimates of the true 
amplitude and intensity) are:

⟨Fh⟩ = ⟨ Jh
½
⟩ = (σh/2π)

½
Γ(3

2 ) exp(−th
2
(1)/4) U(1,−th(1)) / Φ( th(1))

⟨ Jh⟩ = (t h(1)Φ(th(1)) + ϕ( th(1))) / Φ( th(1))
= th(1) + ϕ(th(1)) / Φ( th(1))

(45)

(46)

The standard deviation of F is the square root of the second moment of the deviation F from the mean:

σ(F h) = ⟨(F h−⟨F h⟩)
2
⟩

½

=(⟨F h
2
⟩ − ⟨F h⟩

2
)
½

=(⟨Jh⟩ − ⟨Jh
½
⟩
2
)
½

(47)
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12. FW likelihood function & posterior moments: untwinned centric case.

For untwinned centric reflexions we have similarly:

Pch(Ih |Sh ,σh) = (2πσh Sh
½
)
−1∫

0

∞

Jh
−½ exp(−(Ih−Jh)

2
/2σ h

2
) exp(−Jh /2 Sh) dJh

= (2π)−½Qh(½ , −½ , ½)

= (2π (σh Sh)
½
)
−1 exp(σh

2
/8 Sh

2
−I h/2Sh) Γ (½) exp(−t h

2
(½)/4) U(0,−t h(½))

(48)

where th(½)=Ih/σh – σh/2Sh .  Hence the contribution to the negative log-likelihood gain in the 

centric case is:

−LLGc h(g ,U) = ln(2π (σh Sh)
½
/ Γ(½ ) exp(−th

2
(½)/4 )) U(0,−t h(½ )) − σh

2
/8 Sh

2
+ Ih/2Sh

(49)

Note that the centric contribution to the FW function is not simply related to the acentric one, as it was 
for the PB function.

The m’th posterior moment of Jh in this case is then:

⟨J h
m
⟩ = Qh(0, m−½ , ½ ) / Qh(0,−½ , ½)

= U(m ,−th(½)) / U(0,−th(½)) (50)

The half- and first-order posterior moments of Jh are then:

⟨J h
½
⟩ = Qh(0, 0, ½) / Qh(0, −½ , ½)

= (2πσh)
½
Φ(t h(½)) / Γ (½) exp(−th

2
(½)/4) U(0,−th(½))

⟨J h⟩ = Qh(0, ½ , ½) / Qh(0, −½ , ½)

= σh Γ(
3
2 ) U(1,−th(½)) / Γ (½) U(0,−th(½)) (51)
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13. FW likelihood function & posterior moments: acentric perfect hemihedral twin case.

For perfect hemihedrally twinned acentric reflexions, substituting (8) and (20) in (18) and again 
discarding factors that are independent of the parameters g and U:

Path(Ih |S h ,σh) = 4 (σh √(2 π)Sh
2
)
−1∫

0

∞

Jh exp(−(I h−Jh)
2
/2σ h

2
) exp(−2 Jh/Sh) dJ h

= 4 Qh(2, 1, 2)

= 4σhSh
−2 exp(2σh

2
/Sh

2
−2 Ih /Sh) (th(2)Φ(t h(2)) + ϕ(t h(2))) (52)

where th(2)=I h /σh – 2σh /Sh .  Hence the contribution to the negative log-likelihood gain in the 

acentric perfect hemihedral twin case is:

−LLGat h(g ,U) = ln(Sh
2
/ 4σh (th(2) Φ(t h(2)) + ϕ(t h(2)))) − 2σh

2
/Sh

2
+ 2 Ih /Sh

(53)

The m’th posterior moment of Jh in this case is then:

⟨J h
m⟩ = Qh(0, m+1, 2) / Qh(0, 1, 2) (54)

The half- and first-order posterior moments of Jh are:

⟨J h
½
⟩ = Qh(0, 3

2 , 2) / Qh(0, 1, 2)

= (σh/2π)
½
Γ(5

2 ) exp(−t h
2
(2)/4) U(2,−t h(2)) / ( th(2) Φ(th(2)) + ϕ(th(2)))

⟨J h⟩ = Qh(0, 2, 2) / Qh(0, 1, 2)

= σh ((th
2
(2)+1) Φ(th(2)) + t h(2) ϕ(th(2))) / (th(2) Φ(th(2)) + ϕ(th(2)))

= σh (t h
2
(2) + 1 + th(2) ϕ(t h(2)) / Φ(th(2))) / ( th(2)+ ϕ( th(2)) / Φ(th(2)))

(55)
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14. FW likelihood function & posterior moments: acentric imperfect hemihedral twin case.

The PDF and -LLG in the acentric imperfect hemihedral twin case is:

Path(Ih |Sh ,σh ,α) = f(1−α) + f (α) (56)

where:

f(x ) = (σh√2π(2 x−1)Sh)
−1
∫
0

∞

exp(−(Ih−Jh)
2
/2σh

2
) exp(−Jh/ x Sh) dJh

= (2 x−1)−1 Qh(1, 0, x−1
)

Path(Ih |Sh ,σh ,α) = (1−2α)−1 (Qh(1, 0, (1−α)−1)− Qh(1, 0, α−1))

−LLGath(g ,U ,α) = − ln(Path( Ih |Sh ,σh ,α))

(57)

(58)

(59)

In (58) & (59) care must be taken to deal with values of the twin fraction α near zero causing ill-
conditioning which can occur during optimisation of α.  We use the scaled cumulative normal density, 
factoring out the exponentially increasing component of the function:

Φ ' ( th(α
−1
))= exp(th

2
(α

−1
)/2) Φ(th(α

−1
)) whenever th(α

−1
)≤ 0 in the calculation of

Qh(1, 0, α−1
) using (23).  It is not necessary to deal similarly with values of α near 1 in the first 

term of (58) since we can always replace 1-α by α (i.e. by definition α can always be moved to the 

range 0 ≤α ≤ 0.5 ).  By using a first-order Taylor expansion in 1-2α we can deal with ill-

conditioning due to α near the perfect twin case 0.5 (since then both numerator and denominator in 
(58) are near zero).

The m’th posterior moment of Jh in this case is then:

⟨J h
m
⟩ = (Qh(0, m , (1−α)−1

)− Qh(0, m, α−1
)) /

(Qh(0, 0, (1−α)−1
)− Qh(0, 0, α−1

)) (60)

The half- and first-order posterior moments of Jh are:

⟨J h
½
⟩ = (Qh(0, ½ , (1−α)−1

)− Qh(0, ½ , α−1
)) /

(Qh(0, 0, (1−α)−1
)− Qh(0, 0, α−1

))

= (σh/2π)
½
Γ(

3
2 ) (exp(−th

2
((1−α)−1

)/4) U(1,−t h((1−α)−1
))) −

exp(−t h
2
(α−1

)/4) U(1,−th(α
−1
)) / (Φ( th((1−α)−1

))−Φ( th(α
−1
)))

⟨J h⟩ = (Qh(0, 1, (1−α)−1
)− Qh(0, 1, α−1

)) /

(Qh(0, 0, (1−α)−1
)− Qh(0, 0, α−1

))

= σh ( th((1−α)−1
) Φ(th((1−α)−1

)) + ϕ(th((1−α)−1
)) −

th(α
−1
) Φ(th(α

−1
)) − ϕ(th(α

−1
))) / (Φ(th((1−α)−1

))− Φ(th(α
−1
)))

(61)

(62)
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15. FW likelihood function & posterior moments: centric imperfect hemihedral twin case.

The PDF in the centric imperfect hemihedral twin case is:

Pct h(Ih |Sh ,σh ,α) = (2σh√2πα(1−α)Sh)
−1
∫
0

∞

exp(−(Ih−Jh)
2
/2σh

2
− Jh/2αSh)

1F1(½ ; 1 ; (1−2α) Jh / 2α(1−α)Sh) dJh

= (2σh√2πα(1−α)Sh)
−1
∫
0

∞

exp(−(Ih−Jh)
2
/2σh

2
− Jh/4α(1−α)Sh)

I0 ((1−2α) Jh / 4α(1−α)Sh) dJh

= (2σh√2πα(1−α)Sh)
−1
∫
0

∞

exp(−(Ih−Jh)
2
/2σh

2
− Jh/2(1−α)Sh)

I '0((1−2α) Jh / 4α(1−α)Sh) dJh

−LLGct h(g ,U ,α) =−ln(Pcth( Ih |Sh ,σh ,α))

(63)

(64)

In (63) we again use a scaled function, in this case the scaled modified Bessel function I’0 in order to 
factor out the exponentially increasing component of the function and thus avoid floating-point 
overflow.  Note that in this case there are no ill-conditioning issues from the division by α for values of 
α near to zero.

The general m’th order posterior moment of Jh in this case is then:

⟨J h
m
⟩ = ∫

0

∞

Jh
m exp(−(Ih−Jh)

2
/2σh

2
− Jh/2(1−α)Sh) I ' 0((1−2α)J h / 4α(1−α)Sh) dJ h /

∫
0

∞

exp(−( Ih−Jh)
2
/2σh

2
− Jh/2(1−α)Sh) I '0((1−2α) Jh / 4 α(1−α)Sh) dJh (65)

This expression cannot be further simplified, so the integrals must be evaluated numerically.
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