Local Structural Similarity Restraints (LSSR) enable exploitation of information from related structures and facilitate use of NCS

> Oliver S. Smart Global Phasing Ltd Presentation to ACA Meeting Toronto 28th July 2009

NCS in refinement

- NCS: Non Crystallographic Symmetry
- Have 2+ chains in asu that are similar
- Similarity not identity but can be close
- very useful potentially can decrease parameter/data ratio by (up to) factor 2+
- NCS also superb for map averaging
- Ignore at your peril! G. Kleywegt et al.

Standard Approach to NCS in refinement: superposition-based rmsD restraints

- Here conserve similarity between two protein chains with a restraint function.
- Use least squares superposition:
 - O Superposition chain B onto chain A
 - Harmonic restrain the distances d_i between each atom and its ncs partner – pulling them closer.
 - O Restraints lower the rmsD of the superposition.

Conventional approach used by almost everyone to date

NCS violations and Domain motions make superposition-based restraints difficult to use

NCS violations

- Have parts so the with conformations that are distinct in different NCS copies.
- For example you have a loop that from density has distinct conformation in 6 NCS copies – carefully build these in coot

Domain motions

 Domain motions between copies – here 4 chains with two domains and different hinge bend

Alternative: Extend the SHELX approach

- RMS based restraints too laborious
- Avoid any idea of superposition instead lets look at the local environment of each atom.
- Consider local contact distances
- Find atoms within 5.5Å of each atom
- Exclude bond, angle and within plane contacts
- Include 1-4 contacts
- Extends the SHELX 1-4 distance restraint approach to non-bonded

Consider interatomic distances between atoms which are <u>close for two NCS pairs</u>

	87 C	88 N	88 CA	88 CB	88 C
84 O Chain A	3.90	3.02	3.84	3.57	4.40
84 O Chain C	4.01	3.07	3.80	3.34	4.62
d= δ A-C	0.11	0.02	0.04	0.23	0.22
84 C Chain A	5.05	4.24	5.03	4.60	5.53
84 C Chain C	4.96	4.19	5.01	4.54	5.73
d= δ A-C	0.09	0.05	0.02	0.06	0.20

- Example main chain contacts for a helix in hemoglobin 1qpw
- Distances are closely related and do not depend on superposition.

Delta distance distribution has two parts – related peak and random background

Use a function that plateaus instead of a harmonic term

Most similar previous approach: Sali: **MODELLER** probability density function

Local Structural Similarity Restraints (LSSR)

- Does not involve any superposition
- No restraint on absolute contact distances
- Only on difference in local contact distances
- Is much softer than superpositionbased methods – violations entail only a fixed cost
- -autoncs method in BUSTER fully automated detection and application

Application of autoBUSTER – autoncs to re refinement of 60 pdb structures

 Conclusion: as can be expected using NCS produces slightly better Rfree and markedly better Rfree-Rwork gap
 -autoncs circumvents the "to use or not to used" dilemma

tutorial example: 1osg

- complex between BAFF with the peptide bhpBR3
- 3.0Å resolution
- Two protein trimers each binds cyclic peptide
- Originally refined with refmac including (weak) rmsD NCS
- Tutorial wiki example www.globalphasing.com/buster/wiki

autoBUSTER refinement of 1osg

structure	BUSTER R _{vark} R _{free}	Gap R _{fiœ} −R _{vork}	Molprobity Ramach. favored	Molprobity score
1osg pdb (refined B's)	0.185 0.243	5.8%	94.5%	2.81
autoBUSTER control no NCS	0.169 0.249	7.8%	95.4%	2.59
autoBUSTER - autoncs	0.181 0.223	4.3%	96.4%	2.23
autoBUSTER - autoncs TLS	0.169 0.211	4.1%	96.5%	2.23

- autoBUSTER with automated LSSR NCS results in 2% drop in Rfree, better gap and better geometry
- TLS produces further improvements.

There is an extra peptide at a crystal contact: not clear from EDS

Extra peptide: initial BUSTER map

Extra peptide: -autoncs could just interpret

Extra peptide: clear from difference map with -autoncs & TLS despite bulk solvent correction

LSSR Target Restraints

- NCS restraints couple two chains within the structure being refined.
- But suppose you know the chain being refined is similar to a structure that has already been solved (the "target").
- For example:
 - ligand complex with higher resolution apo
 - two crystal forms of the same protein
 - o partial datasets from non-isomorphous crystals
 - O following radiation damage
- Apply LSSR restraints to the fixed target structure supplied as pdb file

Exploiting similarity to existing structures: many approaches

- Rigid body decomposition keep information by not allowing change
- Restraint approaches:
 OBrunger: XPLOR point restraints
 OSali: Modeller pdf restraints (includes fixed cost
 - violation)
 OBUSTER (2007) rmsD (NCS) restraints to a fixed external target structure
 - OLevitt & Brunger: Deformable Elastic Network OBUSTER: LSSR to target structure: easy to use Orefmac

LSSR Target example: glutamate receptors 2e4y 3.40Å resolution MR solution from 2e4u 2.35Å resolution

structure	Rwork/ Rfree	Ramach % core	molprob score
MR solution	0.354 0.351	91.7%	3.03
AB control no NCS no target	0.220 0.269	87.4%	3.22
AB -autoncs	0.227 0.249	91.0%	3.06
AB -target 2e4u -autoncs	0.235 0.247	92.2%	2.95

www.globalphasing.com/buster/wiki

iteration

Summary

BUSTER

- Oeasy to use automated NCS -autoncs
- Otarget high resolution structure during refinement —target highresol.pdb
- OTLS
- OCan reveal marginal map details
- Is available free to academics www.globalphasing.com/buster
- OExamples presented here on the wiki. www.globalphasing.com/buster/wiki/

Acknowledgements

• GΦL

O Tom Womack, Clemens Vonrhein, Claus Flensburg, Wlodek Paciorek, Maria Brandl, Peter Keller, Gerard Bricogne

- BUSTER users
- Support:

OMembers of the Global Phasing Consortium,

OVizier Project FP6