	autoPROC XDS VE AIMLESS STARANISO CCP4 Host User Date autoPROC m4G4eg m4G4eg-2 m40 m4G4eg-3 m4 m4G4eg-5	RSION Jan 3 ⁻ Ver Mon Ap /home/softv m4G4eg_# 34eg-2_#### 4G4eg-3_#### 4G4eg-4_#### m4G4eg-5_#	1.3.0 1, 2020 BUIL sion 2.3.33 (1 Ver vonrhein (gr r 20 10:01:13 ware/xtal/GPh ####.cbf (54 #.cbf (237 ima #.cbf (175 im ##.cbf (107 im ####.cbf (66	0 (20200318) T=20200131 /ersion 0.7.4 1-Apr-2020) rsion 7.0.078 server8 oup = users) 6 CEST 2020 hL/20200420 images, 27°) ages, 118.5°) ages, 87.5°) ages, 53.5°) images, 33°)
and the state of the	Anisotronic data analysis w	ith STARA		
			NIGO.	D0404
Solution of the second se	Spacegroup Cell parameters Wavelength [A] Diffraction limits [A] Eigenvector-1 Eigenvector-2 Eigenvector-3 Direction-1 Direction-2 Direction-3		168.5282 168. 9(1.97 1.000 0.000 0.000 0.894 _a_	P3121 5282 51.9549 0.0 90.0 120.0 0.97918 0 1.970 1.909 0 0.000 0.000 1.000 0.000 0.000 1.000 * - 0.447 _b_* _b_* _c_*
		Overall	Inner Shell	Outer Shell
STARANISO local <l sigl=""> H=0 plane</l>	Low resolution limit High resolution limit	48.946 1.923	48.946 5.226	2.009 1.923
53.51	Rmerge (all I+ & I-)	0.160	0.062	6.190
51.06	Rmeas (all I+ & I-)	0.165	0.064	6.372
	Rpim (all I+ & I-)	0.039	0.016	1.506
22.92	Total number of observations	1040750	56010	47339
	Total number unique	58835	3336	2671
	Mean(I)/sd(I)	16.5	49.2	1.3
120	Completeness (spherical)	91.5	100.0	34.1
STARANISO local <i sigl=""> K=0 plane</i>	Completeness (ellipsoidal)	95.2	100.0	49.3
- 336	Multiplicity	17.7	16.8	17.7
Unmanuel del (incessé) tel juntificação Menteral del funcional Menteral del del del del del del del del del de	CC(1/2)	0.999	0.999	0.350
51.06	Anomalous completeness (spherical)	91.3	100.0	34.1
44.58 A	Anomalous completeness (ellipsoidal)) 95.1	100.0	49.6
	Anomalous multiplicity	9.1	9.0	9.0
6.9	CC(ano) IDANOI/sd(DANO)	-0.122 0.778	-0.131 1.052	0.028 0.710
		011.1.0		0.1.10

Fig.1: R-values as a function of resolution (observations)

Fig.3: Completeness (spherical) as a function of resolution (observations)

Fig.5 : I/sigl as a function of resolution (observations)

Fig.7 : Completeness (ellipsoidal) as a function of image number (observations) - this is the relevant value here.

Fig.2 : Completeness (ellipsoidal) as a function of resolution (observations) - this is the relevant value here.

Fig.4 : CC1/2 as a function of resolution (observations)

Fig.6 : R-values as a function of image number (observations)

Fig.8 : Completeness (spherical) as a function of image number (observations)

Fig.9: CCano as a function of resolution (observations)

number (measurements)

Fig.13 : Decay B-factor (isotropic AIMLESS scaling) as a function of image number (measurements)

Fig.10 : SigAno as a function of resolution (observations)

Fig.11 : Scale factor (isotropic AIMLESS scaling) as a function of image Fig.12 : Scaling B-factor (isotropic AIMLESS scaling) as a function of image number (measurements)

Final scaling/merging - anisotropic data analysis via STARANISO (all measurements - for comparison only)

Fig.14 : R-values as a function of resolution (measurements)

Fig.16 : I/sigl as a function of resolution (measurements)

Fig.18 : Completeness (ellipsoidal) as a function of image number (measurements)

Fig.20 : CCano as a function of resolution (measurements)

Fig.15 : CC1/2 as a function of resolution (measurements)

Fig.17 : R-values as a function of image number (measurements)

Fig.19 : Completeness (spherical) as a function of image number (measurements)

Fig.21 : SigAno as a function of resolution (measurements)

Fig.22 : (sweep m4G4eg) number of spots for each indexing solution as a function of image number

Fig.24 : (sweep m4G4eg) reflections classified as misfits (as a function of detector position)

Fig.26 : (sweep m4G4eg) refined crystal-to-detector distance as a function of image number

Fig.28 : (sweep m4G4eg) deviation of refined cell axes relative to their mean (as a function of image number)

Fig.23 : (sweep m4G4eg) unindexed spots as a function of detector position

Fig.25 : (sweep m4G4eg) divergence and mosaicity (estimated and used) as a function of image number

Fig.27 : (sweep m4G4eg) direct beam position and detector origin as a function of image number

Fig.29 : (sweep m4G4eg) standard deviation (spot position and spindle) as a function of image number

Fig.30 : (sweep m4G4eg-2) number of spots for each indexing solution as a function of image number

Fig.32 : (sweep m4G4eg-2) reflections classified as misfits (as a function of detector position)

Fig.34 : (sweep m4G4eg-2) refined crystal-to-detector distance as a function of image number

Fig.36 : (sweep m4G4eg-2) deviation of refined cell axes relative to their mean (as a function of image number)

Fig.31 : (sweep m4G4eg-2) unindexed spots as a function of detector position

Fig.33 : (sweep m4G4eg-2) divergence and mosaicity (estimated and used) as a function of image number

Fig.35 : (sweep m4G4eg-2) direct beam position and detector origin as a function of image number

Fig.37 : (sweep m4G4eg-2) standard deviation (spot position and spindle) as a function of image number

Fig.38 : (sweep m4G4eg-3) number of spots for each indexing solution as a function of image number

Fig.40 : (sweep m4G4eg-3) reflections classified as misfits (as a function of detector position)

Fig.42 : (sweep m4G4eg-3) refined crystal-to-detector distance as a function of image number

Fig.44 : (sweep m4G4eg-3) deviation of refined cell axes relative to their mean (as a function of image number)

Fig.39 : (sweep m4G4eg-3) unindexed spots as a function of detector position

Fig.41 : (sweep m4G4eg-3) divergence and mosaicity (estimated and used) as a function of image number

Fig.43 : (sweep m4G4eg-3) direct beam position and detector origin as a function of image number

Fig.45 : (sweep m4G4eg-3) standard deviation (spot position and spindle) as a function of image number

Fig.46 : (sweep m4G4eg-4) number of spots for each indexing solution as a function of image number

Fig.48 : (sweep m4G4eg-4) reflections classified as misfits (as a function of detector position)

Fig.50 : (sweep m4G4eg-4) refined crystal-to-detector distance as a function of image number

Fig.52 : (sweep m4G4eg-4) deviation of refined cell axes relative to their mean (as a function of image number)

Fig.47 : (sweep m4G4eg-4) unindexed spots as a function of detector position

Fig.49 : (sweep m4G4eg-4) divergence and mosaicity (estimated and used) as a function of image number

Fig.51 : (sweep m4G4eg-4) direct beam position and detector origin as a function of image number

Fig.53 : (sweep m4G4eg-4) standard deviation (spot position and spindle) as a function of image number

Fig.54 : (sweep m4G4eg-5) number of spots for each indexing solution as a function of image number

Fig.56 : (sweep m4G4eg-5) reflections classified as misfits (as a function of detector position)

Fig.58 : (sweep m4G4eg-5) refined crystal-to-detector distance as a function of image number

Fig.60 : (sweep m4G4eg-5) deviation of refined cell axes relative to their mean (as a function of image number)

Fig.55 : (sweep m4G4eg-5) unindexed spots as a function of detector position

Fig.57 : (sweep m4G4eg-5) divergence and mosaicity (estimated and used) as a function of image number

Fig.59 : (sweep m4G4eg-5) direct beam position and detector origin as a function of image number

Fig.61 : (sweep m4G4eg-5) standard deviation (spot position and spindle) as a function of image number

autoPROC	Vonrhein, C., Flensburg, C., Keller, P., Sharff, A., Smart, O., Paciorek, W., Womack, T. and Bricogne, G. (2011). Data processing and analysis with the autoPROC toolbox. Acta Cryst. D67, 293-302.
XDS	Kabsch, W. (2010). XDS. Acta Cryst. D66, 125-132.
POINTLESS	Evans, P.R. (2006). Scaling and assessment of data quality, Acta Cryst. D62, 72-82.
AIMLESS	Evans, P.R. and Murshudov, G.N. (2013). How good are my data and what is the resolution?, Acta Cryst. D69, 1204-1214.
CCP4	Winn, M.D., Ballard, C.C., Cowtan, K.D. Dodson, E.J., Emsley, P., Evans, P.R., Keegan, R.M., Krissinel, E.B., Leslie, A.G.W., McCoy, A., McNicholas, S.J., Murshudov, G.N., Pannu, N.S., Potterton, E.A., Powell, H.R., Read, R.J., Vagin, A. and Wilson, K.S. (2011). Overview of the CCP4 suite and current developments, Acta. Cryst. D67, 235-242.
STARANISO	Tickle, I.J., Flensburg, C., Keller, P., Paciorek, W., Sharff, A., Vonrhein, C., and Bricogne, G. (2020). STARANISO. Cambridge, United Kingdom: Global Phasing Ltd.