**Refinement with Local Structure Similarity Restraints (LSSR) enables exploitation of information from related structures and facilitates use of NCS.** O. S. Smart, M. Brandl, C. Flensburg, P. A. Keller, W. Paciorek, C. Vonrhein, T. O. Womack and G. Bricogne, Global Phasing Ltd., Sheraton House, Cambridge CB3 0AX, UK.

We have developed a novel restraint procedure that can be used in maximum-likelihood refinement to exploit information that the structure under consideration is similar to another. This similarity can be to an already solved structure, the "target". For instance a high-resolution apo structure can be used as a target when refining a lower-resolution ligand-soak structure. Alternatively the similarity could be between two or more chains within the structure being refined and thus can enforce NCS. The restraint is defined by considering the distance  $r_{AB}$  between pairs of atoms A, B within the chain to be restrained. All pairs of atoms that are not bonded and have  $r_{AB} < 5.5$ Å are considered. Structural similarity implies that the distance  $r'_{AB}$  between the corresponding atoms in the other chain or target structure will in general be close to  $r_{AB}$ . LSSR imposes for each atom pair a penalty on the difference in distances  $d = r_{AB} - r'_{AB}$ . For targeting to an external structure,  $r'_{AB}$  remains constant in the refinement, whereas for NCS it will vary.



The LSSR functional form is not harmonic but instead plateaus as d gets large, thus automatically allowing differences to be accommodated if the X-ray data so demand. Because LSSR are local, there is no need to separate out domains. These features make it easy to use compared to conventional harmonic superposition-based NCS treatments which often require elaborate segmentations. BUSTER refinement with LSSR results in lower R<sub>free</sub> and a narrower R<sub>free</sub>-R<sub>work</sub> gap. The method is particularly applicable to the refinement of protein-ligand complexes and large oligomeric assemblies.